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Abstract We present a model of neural nehvork that consists of several subnetworks or 
categories. Each of the subnetworks may serve to s t o ~  a family of correlated or uncorrelated 
data, Recognition of a pattern kom a given family (subnetwork) consists in identifidon of that 
family first, and then in recognition within the corresponding subnetwork. Family identification 
is based on appropriate novelty checks. Results of those checks are used for selfcontrol of 
the recognition process. The model works.as a memory which tentatively forgets and therefore 
allows for a sigtiificant increase in its storage capacity. 

1. Introduction 

One of the most fundamental properties of neural network memories [l] is their limited 
storage capacity. Hopfield [2, 31 in his pioneering paper has shown that a fully connected 
network of N neurons with Hebbian learning rule can store p = 0.14N  unbiased 
random pattems, provided small errors are allowed. Gardner [4,5] demonstrated that with 
optimal choice of synaptic connections the maximal storage capacity for such pattems is 
CY = p/N = 2. There have been several attempts to increase the storage capacity of 
Hopfield-type networks. Demda et af [6] have shown that strongly diluted networks can 
store CY = 2/n random unbiased pattems per connection. 

Willshaw.er al [7] observed that it is possible to store in a perceptron memory [8] 
p o( N2/ In2 N sparsely coded pattems (i.e. pattems consisting mostly of equal sign entries). 
Tsodyks and Feigelman [9] generalized this result to Hopfield-like nets. However, there is a 
price for increased capacity, because sparsely coded pattems contain much less information 
than &dom ones. Nevertheless, information capacity~ per neuron remains non-zero in 
the case of sparsely coded data. This result also holds for correlated data in the limit of 
increasing correlation length [IO]. 

The main aim of the present paper is to construct a model that allows infinite storage 
capacity CY without the requirement of sparse coding or strong correlations. Our model can 
store y families of p pattems. Different families may be uncorrelated, whereas pattems 
within a family are biased on a prototype pattem of the family. As we discuss in section 5, 
in the limit of strong bias the storage capacity indeed t&ds to infinity. Even in the case of 
families of uncorrelated pattems our model allows for an increase in the capacity for the 
Hebbian rule from 0.14 to Z/x. 

A similar problem was considered by Frkz et al 1111. In their paper, they constructed 
synaptic metrics that can store uncorrelated classes of pattems. The drawback of the method 
is that their prescription makes the synaptic metrics non-local. Our approach is different. 
We use standard or slightly modified learning aigonthms and achieve a similar goal in 
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a dynamical instead of a static way. During the dynamics, our model recognizes the 
subnetwork (category) first, and then the pattern within it. 

In a sense our model is a generalization of Parisi’s ‘memory which forgets’. In Parisi’s 
model [12] the newest pattems are learned with biggest weight. In this way older pattems 
are consecutively forgotten in the course of learning. In our model, the memory tentatively 
forgets information about all families of patterns except the one to which the recognized 
pattem belongs. This aim is achieved using a neural network with self-control mechanisms, 
recently proposed by us and called ‘nervous’ neural networks [13,14]. 

‘Nervous’ neural networks are able to recognize novelty or a category of the pattern 
presented to them in the very early stages of the recognition process. In order to construct 
a network, which would self-consistently check novelty or a category of input pattems and 
which would incorporate a control mechanism based on this novelty check, one has to solve 
two crucial problems. First of all, one has to identify the quantity that may be used to detect 
the novelty of the input patterns;’ one then has to determine how this quantity can control 
the dynamics. Fortunately, an indication of how these problems may be solved follows 
from an observation made by Hopfield [Z]. 

In the Monte Carlo (MC) simulation of king spin dynamics one randomly chooses spins 
and then checks whether or not they should undergo flips. The relative number of spins 
or neurons, which flip in the very initial stage of the evolution, may be identilied with 
the desired global parameter that provides a check of the novelty. The same parameter 
characterizes very precisely how well the current pattern is known to the system. The 
relative flip frequency of the tossed neurom also provides a powerful means of measuring 
the distance of the current state to some of the equilibrium states, due to the flatness of 
an energy landscape. in the vicinity of a local minimum (see the discussion of relevant 
simulations in [13,14]). In the present paper we generalize this method of pre-recognition 
of novelty to the case of pre-recognition of several distinct categories. The results of the 
category check are then used to modify and control standard MC dynamics. 

The plan of the paper is as follows. In section 2 we decribe our model’in detail. In 
section 3 we present the results of numerical simulations. In section 4 we formulate the 
analytic theory of the model for the case of unbiased random patterns. To this end we 
generalize the theory of Demda et a1 [6]. In section 5 we formulate the theory for the case 
of uncorrelated families of strongly biased patterns. As a result we obtain infinite storage 
capacity as in Willshaw’s paper without losing the diversity of stored patterns. Section 6 
contains a conclusion and a discussion of the possible applications of our model to cognitive 
science and artificial intelligence. 

2. Description of the model 

We shall now present a mathematical description of ‘nervous’ neural netwoks, leaving a 
detailed discussion of their possible applications to section 6. 

The models in question are supposed to store y categories of pattems. The patterns 
within each category may but do not have to be correlated. By different categories we simply 
mean here groups of pattems which correspond to an assigned quality. In psychological 
applications (see section 61, these may be, for instance, groups of patterns related to different 
qualities of emotions, such as fear, joy etc. 

In numerical simulations and in the first part of an analytic treatment we have stored in 
the memory random uncorrelated and unbiased patterns (g’, v = I , .  . . , y .  @ = 1,.  . . , p ,  
where p was the number of pattems in the category. Later, we have also considered y 
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uncorrelated families of patterns strongly biased on family prototypes. The model was 
constructed so that it was able to: 

(i) recognize the category to which an input pattern belongs, using an appropriate novelty 
check; and 

(ii) recognize the input pattern within its category only. 
Our aim here was to model categories of patterns with different qualities in such a way 

that initial recognition of input data as ‘known’ for a given category would facilitate final 
recognition within the same category. 

In order to construct y appropriate novelty checks we consider a filly connected network 
that consists of y diluted Hopfield networks [I]. We have divided all existing bonds (i, j )  
into y disjoint sets of the same size S,, U = 1 , .  . . , y .  The sum of these sets is the set of all 
bonds. The number of sets y might remain finite in the thermodynamical limit-that is the 
case of moderate dilution [ 1.15.161. Alternatively, we may study the case of strong dilution 
[6,17], for which the number of bonds in each~of the sets S,, K, behaves as KIN + 0 for 

~N + CO. 

In the case of random unbiased patterns the couplings in these models take the standard 
Hebbian form 

for (i, j )  belonging to the set S,. In the case of uncorrelated families of biased pattems we 
use a modified Hebb rule (see section 5). 

In the above expression we have introduced weights of the category wv. Note that 
w, may be absorbed in the definition of temperature &d in such a case = Bw. would 
correspond to the temperature (noise level) of a given category of pattems. We expect that 
in stationary states one and only one of the weights w, remains relevant. Although the 
bonds are diluted in this limit, the system recognizes nearly perfectly stored pattems (t””}. 

We may now decompose the local field acting on neuron i, hi = cjii J i j q  into the 
contributions coming from different families of pattems, 

where 

The MC updating is performed as usual by demanding that a spin U; would flip with 
probability 1, if it is aligned antiparallel to its local field hi,  i.e. u;hi < 0, or with probability 
p = 1 - exp(-2Buihi), if uihi 2 0. 

The novelty checks can now be constructed for each category by monitoring the 
frequency of spin flips, which would take place if only a given caiegory was present. We 
introduce y parameters s, at each MC step, which are defined as follows: s, = 1 if uih,i < 0 
or if qh,-  > 0 with conditional probability p = 1 - exp ( -2gh, jq) ;  otherwise s, = 0. 
Instead of variation in the noise level which was used in [13,14], we introduce here m d o m  
variations of  the^ weights wy (or, in another words, variations of the noise levels of the 
categories). For the (n + 1)th Mc step’we use the formula 

w:” = W{ - A-s: + A+(l -s;) (4) 
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with A- = 0.04, A+ = 0.03 Additionally we let e+' = 0.1, if W E  becomes less than 0.8. 
If w; becomes negative, we set it and keep it equal to zero. 

In simulations one may start with w, =. 1 for all U at relatively low temperatures, so 
that all retrieval states are stable. The response of the system is then typically of two kinds: 

(i) If the input pattern is 'unknown' to the system (i.e. the input pattern is only weakly 
correlated to any of the stored patterns p"), the initial frequency of potential flips sy is 
large enough, so that each of the w,s will drift towards zero. 

(ii) If the input pattern is macroscopically correlated to any of the patterns tKv, the 
corresponding w, increase. All other wv, for U' # U, again drift towards w,, = 0: the 
ancestor state will, in this case, be recognized perfectly, but recognition will take place 
within the category U. 

Clearly these models may be generalized to the case of correlated patterns which we 
discuss in section 5. Dynamical correlation among different categories may be included in 
expression (1.2) for the variations of wv. For example, we may model a situation in which 
'known' patterns belonging to one category facilitate recognition of patterns belonging to 
some other category or a group of categories. 

3. Numerical results 

It seems possible that the models of the class discussed above may be used to increase 
the storage capacity of the Hopfield model. As already observed by Hopfield and studied 
in our simulations, novelty checks based on measurement of the spin flip frequency do 
work for overloaded Hopfield models (i.e. for the case when the number of patterns p 
exceeds the critical value QN). Then, the model may first recognize the category to 
which the input pattern belongs, and then perform recognition within a subnetwork of the 
corresponding category. The storage capacity of the model would then be a sum of the 
capacities of subnetworks which, h principle, may exceed the standard result for fully 
connected networks. Such an increase in the storage capacity is, in a sense, analogous to 
that discussed by Parisi [12], in the paper on memory, which can leam arbitrarily many 
new patterns, forgetting the old ones in order to avoid overloading. Our model presents 
a 'memory which tentatively forgets', due to the introduced self-control mechanism, and 
which remains underloaded in the course of recognition. 

In this section we will discuss our numerical results. The system is built from a regular 
fully connected Hopfield model where memories are. stored using the Hebbian rule. First, 
we divide our network into y subnetworks by randomly selecting synaptic connections to 
different subnets. To every subnet there is an assigned weight w,, which at the beginning 
of the simulation is the same for every subnet and set to one. During the simulation the 
w, are updated in every MC step, using formula (4) shown in the previous section. After 
dividing the network into subnetworks we teach it configurations which it should recall. 
This is done, as we said earlier, by using the Hebbian rule separately for every subnet. 
In the simulation all subnetworks have the same number p of uncorrelated patterns. The 
starting configuration is built by randomly distorting one of the stored memories. 

The dynamics of the system is performed by modified MC updating. The difference 
is that in every step we calculate the local fields h,i from each subnet separately, then 
check whether its sign agrees with the total field of system and whether the tossed spin 
would change its sign if it experienced the local field h,i only. We then change the weights 
accordingly. The total field is calculated by summing all local fields. The actual dynamical 
behaviour of tossed spins results from the standard Mc rule applied for the total field. 
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During simulations we checked whether our system converges toward the initially 
distorted state. If yes, we considered that the pattern was recalled. The procedure was 
repeated for every stored pattem. We encounteced three classes of behaviour of the system. 

(i) Identification (correct recognition). The system converges towards an ancestor 
pattem, first choosing the subnet to which it belongs. 

(ii) Ciassification (recognition of category). The system fluctuates around the pattem, 
but cannot acquire the required precision of recognition. The category of pattern was 
classified correctly. 

(iii) Failure The system randomly walks over configurations, rapidly escaping from the 
ancestor pattern. 

The subnet in which the pattern was stored, i.e. the category to which it belonged, 
was usually (except for the case of failure) recognized much earlier than the pattem itself. 
The weight of that subnetwork steadily increases while all other weights rapidly converged 
towards zero and stayed there for the rest of the simulation. 

The simulations were performed for N = 200 spins. The results averaged over few 
realizations are shown in the figures at the end of this section. The figures show the ratios 
of pattern identified, classified and failed to identify to the number of patterns stored in 
the whole network as a function of imposed capacity on the network. As one can see the 
network shows a tendency to increase its capacity. Note that our numerical results still 
contain some fluctuations due to the finite number of neurons. In addition, these results 
correspond to finite y .  i.e. moderate dilution within each subnetwork. For these reasons the 
increase in capacity is not as large as expected in the case of strong dilution. We discuss 
this point in detail in the next section. 
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Figure 1. The percentage of various types of responses as a function of the toral capacity for a 
network consisting of one subnet: full line with circles. percentage of identifrcation: dotted Line 
with lriangles, percentage of classifcation; and bmken line with squares, perceniage of failure. 

4. Network with strongly diluted subnetworks 

When the number of networks y is finite, the number of connections per neuron in each of 
the networks K = N / y  is comparable to N .  This is the case of moderate dilution which 
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Fiere  2. The same as figure 1 but for a nework devided into three subnetworks. 
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Figure 3. The same as figure 1 but for a network devided into five subnetworks. 

is very difficult to analyse. We can, however, get some analytic insight into the discussed 
model in the strongly diluted case, when y + 00 in such a way that KIN + 0. In this 
situation we expect that the method developed by Derrida et a1 [6] will tum out to be useful. 

In the present section we will consider the case y --f 00 and perform self-consistent 
signal-to-noise analysis. Let us then consider a network of N neurons, undergoing dynamics 

(5) mi(t + 1) = sign(hi(t)). 

The local field contains Hebbian contributions from all subnetworks, 

where $? are independently distributed unbiased random variables. 
To complete the description of the model we have to specify dynamics of weights w,. 

In the case of asynchronous dynamics one could adopt the definition used in numerical 
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simulations (4). Here, however, we shall consider synchronous dynamics, which usually 
allows for a much simpler description in the thermodynamical limit The dynamics of wv 
should in this case, be determined by appropriately defined mean frequencies of neuron 
flips. We follow here the approach used in [MI. 

First, we define quantities that measure me& frequencies of spin flips, which would 
take place if only one subnetwork was present. For each v we define 

. N  

.Note that if the system configuration is completely unrelated to memories stored in the vth 
subnetwork, a, z= 112. Conversly, if the system configuration is close to one of the states 
stored in the uth subnetwork, say p", then a"  tends to zero. 

It is thus useful to introduce exponential dynamics for w, 

w d r  + 1) = exp(y(1 - 4av(t)Nwdr). (8 )  

Equation (8) ensures that w, will exponentially decay to infinity if the pattern is known (i.e. 
a, is small) or to zero if the pattern is unknown (i.e. a, greater than i) P :  We will now assume that, in the thermodynamical limit and for increasing time, only 
one subnetwork survives and all other w, tend rapidly to zero. We will treat the contribution 
to the local field from these subnets as vanishing noise. On the other hand, the dynamics 
within one remaining subnet corresponds to the~dynamics of a strongly diluted network. 
Here, we cannot neglect the noise coming from other patterns of the category. In the limit 
of large number of connections per neuron K we may, however, treat this noise as Gaussian, 
according to the theory of Denida er al [6]. 

Let us assume that initial state corresponds to randomly distorted pattern 6;'. For 
sufficiently long.times, all w, for U # 1 tend rapidly to zero,and we may treat the system as 
a single strongly diluted neiwork. According to the theory of Demda et al, probability 
distribution of the neuron configuration uj; averaged over initial state distribution and 
ancestors of the ith neuron in the subnetwork is a function of e)' only and is given by 

The mean signal (i.e. averaged total local field hi@)) is then given by 

(hi) = Wl$%n(+) -m(-)). (10) 

On the other hand, the total noise has two contributions: one coming from subnet 1 and the 
other coming from other sub nets.^ The squaie of the noise is defined as (h;) - (hi)' and is 
equal to 

Our theory will be correct provided the second term in equation (1 1) is negligible in 
comparison to the first one. This will happen provided 
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where (wt/w:) denotes a typical value of w$/w:. According to equation (8) we obtain 

(wz/w:) 2: exp(-4yt). (13) 
From equation (12) follows the lower bound for time 

f >> (1/4y)Iny. (14) 
On the other hand, the Denida theory is valid provided the time is not too long so that 
there are no closed loops in the ancestor tree of the neurons within a diluted network. The 
condition is 

K' << N .  (15) 
Let us assume that y = NI, with 0 < x < 1. From the above two equations it follows 

that K = N / y  =NI-' and 
X 1 

-lnN<<t<<-. 
4Y 1 - x  

This condition is hard to fulfil in the limit of N + 00, but may be fulfilled for any large 
but finite N provided x is sufficiently close to 1. 

In the critical case x = 1, and we may take y = N / a  where a is some positive constant. 
Then K = a and we obtain 

In N 1 
- > > f  >>-(lnN-InK). 
In K 4Y 

Equation (17) is easy to fulfil provided 

4 y > I n K .  (18) 
In conclusion, we have shown that there is a well defined region of time for which 

the dynamics of our model reduces to that of the strongly diluted models of Derrida et al. 
Denoting m(t)  = m(+) - m(-) the dynamics takes the form 

m(t + 1) = (sipn(m(t) + R(t)z)) ,  (19) 
where (. . J Z  denotes averaging over a Gaussian noise with mean zero and variance 1. The 
noise strength is 

Of course, our asymptotic analysis indicates that retrieval states for which all wv except 
one are equal to zero and for which the configuration of the network has non-vanishing 
overlap with one and only one stored pattern are locally stable. We cannot say anything 
about the domain of attraction of retrieval states and about our approach to them in the 
initial phase of the dynamics. In this respect we rely on numerical simulations from the 
previous section. They clearly indicate that typically one subnet survives in the course of 
the dynamics, provided the evolution of w, is fast enough. In the notation of the analytic 
theory of this section this means that y should be large enough. 

What is the maximal storage capacity of our network? Since the maximal storage 
capacity of strongly diluted network is p = 2 K / n  [6], so is the capacity of each subnetwork. 
The total capacity is thus P = py = 2N/?r. Since we used a standard Hebbian rule, this 
result should be compared to the Hopfield result P Y 0.14N. As we see, using our 
dynamical pre-recognition of categories we were able to increase the capacity by a factor 
greater than four! 
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5. Storage of uncorrelated families of strongly biased patterns 

There have been many attempts to increase the storage capacity of neural network memories. 
One that seems to be very successful is that of Willshaw er al [7], who showed that 
a perceptron may store p = N z /  In2 N strongly biased patterns. Tsodyks and Feigelman 
generalized this method to attractor networks. The method allows the informational capacity 
to be kept finite with a growing number of stored patterns. Its weaker points are that the 
stored configurations carry less information and their variety sharply decreases in the sparse 
coding limit. As will be shown below, our model maintains, a similar storage capacity 
allowing the storage of a practically unlimited variety of patterns. 

Let us consider, as in the previous section, a network whose synaptic connections are 
randomly divided into y subnetworks (i.e. categories). The number of those subnetworks 
at that point is arbitrary. Every category has a stored prototype, which is uncorrelated with 
other prototypes of different categories. Prototypes may be stored in the memory using, for 
example, the standard Hebb rule for each category. In the next step we construct a family 
of patterns which are biased on the corresponding prototype for every subnetwork. The 
probability distribution of these configurations is 

where t/ is the value of the prototype of subnetwork U at site i and a is a constant taking 
d u e s  between values 0 and 1, describing the bias of patterns on the prototypes. It is kept 
the same for all patterns in all subnetworks for simplicity. 

In this way the model has stored families of biased pattern which are uncorrelated with 
one another. To construct a matrix of connections Jij we use, similar to Tsodyks and 
Feigelman [9]  and Amit [I], a generalized and modified Hebb rule. The difference is thas 
in addition, every neuron corresponds to a different threshold value. Then, the local field 
at site i is given by 

where 6:” is the value of the pth pattem biased on the uth prototype (and stored in the 
uth subnetwork) at site i, 0 is the c o n s k t  that describes the threshold and takes a value 
between 0 and 4, tuv is the weight for the uth subnetwork, defined in the same way as in 
the previous section, K is a normalizing constant, equal to the number of connections per 
neuron within a subnetwork. 

The sum over j mns for a given U over those connections that belong to the uth subnet. 
As one can see, by taking a = 0 the equation for the local field, except for the threshold 
value, looks the same as equation (6) in the previous section, where we used Hebb’s rule 
to store patterns. If, on the other hand, one takes the limit of a -+ 1, one gets + 6; 
which means that the stored patterns tend to be the same as the prototypes in corresponding 
subnetworks. We will consider this limit in later calculations because in this case (i.e. 
strongly biased patterns) the noise of the network will tend to zero in comparison with the 
signal. 

The dynamics of the system will be analogous to that from the previous section and can 
be described by the equation 

ui(t + 1) = sign(hi(t)). (23) 
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The local field is described in equation (22). The weights of the subnetworks and their 
dynamics are introduced in the same way as in the previous section, so they will not be 
repeated here. Again, the behaviour of the system is that all weights except for one, which 
is assigned to the subnetwork in which the stored pattern is recognized, tend to zero (i.e. 
all subnetworks (categories) aie ‘turned off except for the one where the correct pattern is 
stored). Then the pattem within that subnetwork is recognized. 

Let us now consider the problem more carefully. As was said earlier in the case of 
strongly biased patterns (a -+ 1) the noise will tend to zero in comparison with the signal. 
In this case we can expect our system to converge to one of the stored patterns. To focus 
attention let us consider that it is the first pattem from the first subnet. Thus we can assume 
that the state of the ith neuron is given by 

(24) I 1  
(Uj)  = 6 +&U = til + D(l - a y  

where D is an independent constant. The above expression means that (uj) differs from 
$1’ by a small correction 8u of the order of D (1 -a)”. We combine the above formula 
with equation (22) to calculate averaged local field and noise. After simple calculations we 
get formulae for the local field 

( h i ) = w l ( ~ 1 1 - a ~ ~ ) ( l - a 2 ) + a ( l - a ) B ~ ~  (25) 

and for the noise 

R2 = (h:) - (hi)’ 

- lTw’“ 4 2 2  (1 -a )  2 ti 1 (ti 1 1  -&)e 

where p is the capacity of the subnetwork. 

and we assume that 
We anticipate that in the limit a --f 1 the capacity of subnetworks p tends to infinity 

B p = -  
(a - 1)2’  

Inserting these two formulae into equation (26). finally, taking the limit a + 1 we get the 
following equation for the signal. 

s = (I  - ~ ) ( 2 ( g l  - at;) +et;)  (29) 

and for the noise, considering only the relevant parts, 
* 

(30) 
32w:(ti1 - u C / ) * ( I  -U)’ SBwf(1 -U)’ SE w:(l -a)’ 

+A (1 -a)lin(l -a ) l ’  Alln(1 -a ) [  + Alln(1 -a ) l  
R2 = 

v=2 
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Now we can rewrite our dynamics from equation (23) to the form 

+ 1 ) )  = (sign(S,+ Rz)), .  (31) 
As in [18], we want to derive equation (24) from this equation. After easy calculations we 
see that when 5; = 1 or 5; = -1 we obtain a correction term of order Su N_ (1 - a)X 
where x is given by 

From the condition that the exponent has to be greater than or equal 1 ,  one concludes  that^ 
the third term in the denominator, which describes the  noise coming from subnets whose 
weights tend to zero. must not be greater than 1: 

Now, assuming that the dynamics of the weights wy, U 2 1, are defined as in an earlier 
section and given by 

(wt/w:) N exp(-4yt) (34) 

4yt > In(y/(l -a)).  (35) 

one can derive the lower bound for time which can be written as 

As one can see from the above equation if the time is long enough the noise resulting from 
the existence of many subnetworks will tend to zero and one is then left with a model with 
one diluted network with strongly biased patterns. 

Let us now consider the capacity of our model. In the case of strongly biased patterns 
we do not 'have any limitations on the number of subnetworks which was required as the 
applicability s condition of Denida's theory in a previous section. First let us consider~the 
number of subnets y to be finite (i.e. we have only a few subnetworks). The lower bound 
for time is given'by 

(36) f > (I/v)l In(1 - a)l 
and the capacity of the network is given by 

so that we recover the Willshaw result. In the case where y tends to infinity we can assume 
that it is given by 

y = C/(l -a)". (38) 

t 3 ((n + I)/v)l In(1 - a l l  (39) 

Then our lower bound on time takes the form 

and the capacity is given by 

It is interesting to see that it is largest when n = 0, i.e. y is constant Then we get the same 
result as Tsodyks and Feigelman [9]. 
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6. Conclusions 

In this paper we have presented a model with a self-control mechanism. The model, on 
one hand, leads to increased storage capacity for a network storing uncorrelated patterns. 
On the other, for strongly biased patterns, we have been abIe to obtain the same storage 
capacity as the WiUshaw model, without having to decrease the variety of stored patterns. 
The mechanism is based on novelty check, consisting of the measurement of appropriately 
defined spin-flip frequencies. The novelty check allows us to distinguish the subnetwork 
(i.e. category) to which the input pattem belongs in the initial stage of the recognition 
process, thus enabling us to t u n  off networks with irrelevant information. 

In this paper we have combined numerical and analytical results for the case of 
uncorrelated patterns. The numerical results agree fairly well with the analytical ones. 

The model described here can be used to construct more efficient networks and thus will 
have practical applications in artificial intelligence. It can also explain results from cognitive 
psychology showing that classification on the category level is faster than identification of 
an exemplar [ 191. Effects of this sort can be demonstrated even when such rapid recognition 
cannot be made by using a feature distinctive for the category [20]. In our model categories 
correspond to subnetworks, whereas exemplars are represented by states of the network. 
The model would thus predict that a faster response on the category level would only be 
possible for well established stable categories. Empirical results in cognitive psychology 
show that this is exactly the case [21]. Our model also explains why it is beneficial for 
the cognitive system first to classify and then to identify the exemplar. Such automatic 
classification occurs even when it interferes with the task [22]. 

The model can also be used to explain the influence of emotional state on the recognition 
process [23]. Each emotion would constitute one category, and would thus correspond to one 
subnetwork in our model. Memories could then be classified, according to this perspective, 
into happy, angry, sad, etc. Being in an emotional state is modelled by increasing the 
weights of a corresponding subnetwork. Emotions would then be modelled as a control 
factor of a cognitive processing which is congruent with the current understanding of the 
role of emotions in psychology [24]. The rapid recognition of an emotional content by the 
novelty detection mechanism could also lead to activation of one of the subnetworks in 
a self-control mechanism. It has been shown that the emotional content of a stimulus is 
classified before the cognitive content is identilied [25].  Our model shows how such dual 
emotional and cognitive coding may lead to increased memory capacity. 
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